

AnnoTree

Caution

This documentation server is in an early stage of development.

Features

Example Workflows

AnnoTree with Custom Data

The use of custom taxonomic, phylogenetic, proteomic, or annotation data only affects the database preparation step.
All other application components operate the same way as the production version of AnnoTree.

Prepare Database

Documentation for database preparation is located within the AnnoTree Database Scripts section.
Keep track of the name of the new database for the backend configuration.

Configure Backend

Documentation for backend configuration is located within the AnnoTree Backend section.
Keep track of the URL that the backend is being served to for the frontend configuration.

Configure Frontend

Documentation for the frontend configuration is located within the AnnoTree Frontend section.

 .. setup-annotree_data:

AnnoTree Production Version

Linux Server

	You need at least 150GB of disk space to properly load databases. We recommend 250GB.

	You should always use a locally attached SSD with >= 40MB/s IO speed for decent query time. Hard drives, network attached SSDs are proven to be too slow for some larger queries (can take 2 minutes). Some Cloud VMs by default will use network attached SSD and will not suit this task.

	It is recommended to create another user annotree_user and change user and group to that user: chown -R annotree_user:annotree_user <this repository>

	Downloading and loading database can take a long time, you might find it easier to run scripts related to them first

	It can take 30 minutes to 1 hour to follow all instructions (excluding loading time)

The following is a log of setting up a server on Feb 25, 2019, using (Ubuntu 16.04, with 2 core CPU, 8GB of RAM and 250GB of disk space):

Setting up MySQL: (If you are using Google Cloud, or other cloud services see bottom before proceeding to this section)

download SQL dump, please refer to https://bitbucket.org/doxeylabcrew/annotree-database/src/master/ for a list of URLs
e.g. wget <my-dump-url>
sudo apt-get update && sudo apt-get install -y mysql-server mysql-client
<enter root password>
The following would take a while, we recommend you use "screen" cmd to avoid terminal interruption
tar -vzxOf <path to .sql.tar.gz file> | mysql -u root -p --default-character-set=utf8
give full permission to gtdb_user
mysql_username=annotree
mysql_password=<CHOOSE YOUR OWN PASSWORD>
echo "CREATE USER '$mysql_username'@'%' IDENTIFIED BY '$mysql_password';GRANT ALL PRIVILEGES ON *.* TO '$mysql_username'@'%'; FLUSH PRIVILEGES;" | mysql -u root -p --default-character-set=utf8
in case you want to save it
sudo echo $mysql_password > /root/mysql_annotree_password

Now log in to the database, for sanity check

mysql -u annotree -p
<enter your password>
show databases;
should show everything that's loaded, keep note of the database names
use <any of the database name, e.g. gtdb_bacteria>
show tables;
should see a list of tables
SELECT COUNT(*) FROM node;
should show the size of node table
SHOW INDEX FROM pfam_top_hits;
should list pfam_id and gtdb_id indices, we encountered an issue in the past when disk space ran out in /tmp and indices were not loaded

Setting up server:

sudo apt-get update && apt-get install -y git python-pip libmysqlclient-dev python-dev build-essential
sudo mkdir -p /app
sudo useradd annotree_user
sudo passwd annotree_user
<enter password>
sudo mkhomedir_helper annotree_user
sudo chown -R annotree_user:annotree_user /app
sudo su - annotree_user
cd /app
git clone --branch latest-release --depth=1 https://bitbucket.org/doxeylabcrew/annotree-backend.git
cd annotree-backend
pip install -r requirements.txt

Now you can update config.py in backend

sudo su - annotree_user # make sure you are annotree_user, skip if you already are
cd /app/annotree-backend
cp sample-config.py config.py
vi config.py
change mysql username and password
change bacterial and archaeal database names as shown when you checked database
normally they should be gtdb_bacteria and gtdb_archaea
you may want to make sure config.py has secure permissions
chmod 440 config.py # this ensures only annotree_user and group annotree_user can read config.py

We will also show how to set up landing page and frontend here.

Landing page

sudo su - annotree_user # make sure you are annotree_user, skip if you already are
cd /app
git clone --depth=1 https://bitbucket.org/doxeylabcrew/annotree-landing-page.git
cd annotree-landing-page
Check annotree-landing-page for newest set up instructions, what's recorded here may be outdated
sudo easy_install nodeenv # switch to your own user if necessary
sudo su - annotree_user && cd /app/annotree-landing-page # do NOT use root from now on
nodeenv node6 --node=6.14.4 # this will be stuck if you use root
. node6/bin/activate
you have node 6 now
node --version
should say 6.14.4
npm install
node node_modules/gulp/bin/gulp.js
the default job compiles all SCSS files and minifies javascript, you should be good to go
sudo chown -R annotree_user:annotree_user /app/annotree-landing-page # fix permission if you accidentally installed by root

Frontend

use your own user account with sudo access
curl -sL https://deb.nodesource.com/setup_11.x | sudo -E bash -
sudo apt-get install -y nodejs
sudo su - annotree_user # make sure you are annotree_user, skip if you already are
cd /app
git clone --branch latest-release --depth=1 https://bitbucket.org/doxeylabcrew/annotree-frontend.git
cd annotree-frontend
Check frontend repo for specific instructions, the following instructions may be outdated
npm install
cp app/Config.js.sample app/Config.js
vi app/Config.js
change SERVER_BASE_URL to "http://<MY IP OR DOMAIN ADRESS>/annotree-api"
npm run build
you should see a public/ folder, this is where all html files are
we will symlink this to inside the landing page
ln -s /app/annotree-frontend/public /app/annotree-landing-page/app

Then, to serve frontend and backend using apache WSGI module:

sudo apt-get install -y apache2 libapache2-mod-wsgi
sudo a2enmod wsgi

We will symlink annotree-landing-page

sudo ln -s /app/annotree-landing-page /var/www/html/annotree

Change apache config file using the following as an example:

sudo vi /etc/apache2/sites-available/000-default.conf
replace with the following

Define annotree_backend_dir /app/annotree-backend

<VirtualHost *:80>
 ServerAdmin annotree_backend
 ServerName annotree_backend
 WSGIDaemonProcess dummy.com user=annotree_user group=annotree_user processes=2 threads=25
 WSGIScriptAlias /annotree-api ${annotree_backend_dir}/app.wsgi
 DocumentRoot /var/www/html/annotree
 <Directory ${annotree_backend_dir}>
 Options Indexes FollowSymLinks
 WSGIProcessGroup dummy.com
 WSGIApplicationGroup %{GLOBAL}
 Order deny,allow
 Allow from all
 Require all granted
 </Directory>
 ErrorLog ${APACHE_LOG_DIR}/annotree_error.log
 CustomLog ${APACHE_LOG_DIR}/annotree_access.log combined
</VirtualHost>

Request to http://example.com/annotree-api/gtdb_bacteria/tree will be converted to /gtdb_bacteria/tree and sent to app.wsgi. You can modify API prefix by changing WSGIScriptAlias directive.

You will need to check frontend app/Config.js to make sure api URL prefix matches.

Enable changes and restart:

sudo service apache2 restart

Now check if everything is working:

curl localhost # you should see the landing page html
curl localhost/app # the main app
curl localhost/annotree-api/gtdb_bacteria/tree # check database and backend

Google Cloud

Google Cloud by default, uses network attached SSDs and will not satisfy our database access needs.We need to allocate a local SSD, which will be removed after instance is stopped (but not restarted). Extra caution is suggested. Database will reside on this drive instead of the default.

We will also need to make sure cloud service has the correct network configuration, this can be done by checking “Allow HTTP/Allow HTTPS” traffic in the VM instance EDIT tab (not included in the following instructions)

The following has been tested on Ubuntu 16.04 LTS:

Steps to set up database on Google Cloud

First go to https://cloud.google.com/compute/docs/disks/local-ssd#creating_a_local_ssd to allocate a SSD for your machine. Then run the following

the following mounts up SSD drive, to /mnt/disks/ssd
lsblk # lists all attached drives, usually "sdb" is the local SSD
sudo mkfs.ext4 -F /dev/sdb
sudo mkdir -p /mnt/disks/ssd
sudo mount /dev/sdb /mnt/disks/ssd
sudo chmod a+w /mnt/disks/ssd

We will install MYSQL server then move to SSD

sudo apt-get update && sudo apt-get install -y mysql-server mysql-client
ENTER "root" as password
sudo service mysql stop
sudo mv /var/lib/mysql /mnt/disks/ssd/mysql
sudo ln -s /mnt/disks/ssd/mysql /var/lib/mysql
Edit config, change "tmpdir" from /tmp to /tmp/mysql
sudo vi /etc/mysql/mysql.conf.d/mysqld.cnf
mkdir -p /mnt/disks/ssd/tmp-mysql
ln -s /mnt/disks/ssd/tmp-mysql /tmp/mysql
chmod a+rw /mnt/disks/ssd/tmp-mysql

Google Cloud uses app armor to manage application read/write permissions

sudo echo "alias /var/lib/mysql/ -> /mnt/disks/ssd/mysql/," >> /etc/apparmor.d/tunables/alias
sudo vi /etc/apparmor.d/usr.sbin.mysqld

Add the following to /etc/apparmor.d/usr.sbin.mysqld; source from: https://support.plesk.com/hc/en-us/articles/360004185293-Unable-to-start-MySQL-on-Ubuntu-AVC-apparmor-DENIED-operation-open-

/proc/*/status r,
/sys/devices/system/node/ r,
/sys/devices/system/node/node*/meminfo r,
/sys/devices/system/node/*/* r,
/sys/devices/system/node/* r,

/tmp/mysql/ r,
/tmp/mysql/** rwk,
/mnt/disks/ssd/tmp-mysql/ r,
/mnt/disks/ssd/tmp-mysql/** rwk,

/mnt/disks/ssd/mysql/ r,
/mnt/disks/ssd/mysql/** rwk,

sudo apparmor_parser -r /etc/apparmor.d/usr.sbin.mysqld
sudo service mysql start
echo "Sanity check to make sure everything is working"
echo "CREATE DATABASE temp; DROP DATABASE temp;" | mysql -u root -proot
should say ok

Now MySQL is good to go, you can continue in previous session

If you are interested in testing speed, use the following command. (It runs a large PFAM query that would normally take ~40s to >1minute on other machines):

echo "SELECT node_id
FROM gtdb_node gn
JOIN
(
SELECT
gtdb_id,
COUNT(DISTINCT pfam_id) AS num_hit_per_genome
FROM pfam_top_hits
WHERE pfam_id IN ('PF00252') AND eval <= 1.0
GROUP BY gtdb_id
HAVING num_hit_per_genome >= 1
) g
ON gn.gtdb_id = g.gtdb_id;" | mysql -u root -proot -D gtdb_bacteria_RS86

Updating

	Please check each repository (annotree-landing-page, annotree-frontend, annotree-backend) for possible instructions, what’s listed here may not be up to date

	First pull newest code to each repository by running git pull origin latest-release:latest-release; or for landing page git pull origin master

	For database, run mysql -u annotree -p and SHOW DATABASES; in MySql to check if all data are loaded properly, do not forget to update backend config.py in case of DB name change

	In case of server domain change, you need to change that in frontend: vi /app/annotree-frontend/app/Config.js to make sure new domain name matches.

	For backend, you may need to run pip install -r requirements.txt again, and npm install && npm run build for frontend; any change to frontend code must be followed by npm run build for it to compile.

	Finally check firewall settings, both on your local machine and on network (You need to allow incoming traffic on any cloud services)

	run service apache2 restart service mysql restart to bring up databases

AnnoTree Database Scripts

This repository contains all the scripts for creating a MySQL database that can be queried by the front-end AnnoTree application for the visualization of functional data on a phylogenetic tree. The scripts were written for implementation with data provided by the GTDB [http://gtdb.ecogenomic.org/] but any data files that use the same format may be used.

Installation Requirements

	You must be running a Unix-based operating system (ie. Linux or Mac)

	Install MySQL 5.7+

	Install Python 3.+

	Install required Python modules. To do this, download the requirements.txt file in the root of this repo and run the following:pip install -r requirements.txt

Configuration YAML and Data Files:

Use gtdb_database/test_data/db_config_example.yml as a template and change the fields accordingly. It is suggested that this file be password-protected in order to hide the secure database information it contains. Consult the gtdb_database/test_data directory for example data files.

	Field
	Description

	database_name
	The name to be assigned to the database in MySQL [default: gtdb_bacteria]

	host
	MySQL database host. This may differ from default if running in a Docker image [default: localhost]

	port
	MySQL port. This may differ from default if running in a Docker container [default: 3306]

	user
	MySQL user with database creation privileges

	password
	Password for the MySQL user

	kegg_counts
	Path to count matrix with KEGG ID's as column names and genome ID's as row names. Row names must match the leaf names in newick_tree [Example: gtdb_kegg_table.test.tsv]

	kegg_tophits_dir
	Path to directory containing KEGG hit scores for each genome. Each file must follow the naming format [genome ID]_ko_hits.tsv and have the same header and format as the files in the example directory [Example directory: ko_tophits.test]

	metadata
	Path to metadata file supplied by the GTDB. So far only the accession (ie. genome ID), ncbi_taxonomy, gtdb_taxonomy, and ncbi_taxid fields are used so a file containing only these fields should work [Example: bac_metadata.test.tsv]

	newick_tree
	Path to phylogenetic tree in Newick format. The tree must contain branch lengths, bootstrap values, and labels at internal nodes with taxonomic ranks following Greengenes taxonomy formatting (ie. 'p__Firmicutes'). Leaf names should represent genome ID's [Example: tsv-to-json/gtdb_r80_bac120.20171025.tree]

	pfam_counts
	Path to count matrix with Pfam ID's as column names and genome ID's as row names. Row names must match the leaf names in newick_tree [Example: gtdb_pfam_table.test.tsv]

	pfam_ftp_dir_url
	URL to the Pfam FTP directory corresponding to the Pfam version you would like to download [Example for v32.0: ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam32.0/database_files]

	pfam_tophits_dir
	Path to directory containing Pfam hit scores for each genome. Each file must follow the naming format [genome ID]_pfam_tophit.tsv and have the same header and format as the files in the example directory [Example directory: pfam_tophits.test]

	protein_seq_dir
	Path to directory containing protein FASTA files for each genome. Each file must follow the naming format [genome ID]_protein.faa. Encoded STOP codons (*) are permitted but are removed for database loading [Example directory: protein_files.test]

	gtdb_taxonomy
	Path to file containing the taxonomy information for each genome ID with similar headers and delimiters as those in the taxonomy files provided by the GTDB [Example: tsv-to-json/gtdb_bac_r80_20171025.tsv]

	json_tree
	Desired output path for the JSON tree generated from data in the gtdb_taxonomy and newick_tree files. It is recommended that this file be given a version number associated with the data files used to generate it [Example: bac_r80_tree.json]

	pfamA_sql
	Desired output path of the MySQL dump file for the pfamA table of the Pfam database. It is recommended that this file be given a version number associated with the Pfam version that was given in pfam_ftp_dir_url. If 'current_release' was used, you should verify the version [Example: pfamA_v32_0.sql]

	pfamA_txt
	Desired output path of the MySQL data file for the pfamA table of the Pfam database. If you are running MySQL with the --secure-file-priv option (true by default), the file must be in the secure directory. It is recommended that this file be given a version number associated with the Pfam version that was given in pfam_ftp_dir_url. If 'current_release' was used, you should verify the version [Example: pfamA_v32_0.txt]

	pfam_taxonomy_sql
	Desired output path of the MySQL dump file for the taxonomy table of the Pfam database. It is recommended that this file be given a version number associated with the Pfam version that was given in pfam_ftp_dir_url. If 'current_release' was used, you should verify the version [Example: pfam_taxonomy_v32_0.sql]

	pfam_taxonomy_txt
	Desired output path of the MySQL data file for the taxonomy table of the Pfam database. If you are running MySQL with the --secure-file-priv option (true by default), the file must be in the secure directory. It is recommended that this file be given a version number associated with the Pfam version that was given in pfam_ftp_dir_url. If 'current_release' was used, you should verify the version [Example: pfamA_v32_0.txt]

	tigrfam_counts
	Path to count matrix with TIGRFAM ID's as column names and genome ID's as row names. Row names must match the leaf names in newick_tree [Example: gtdb_tigrfam_table.test.tsv

	tigrfam_tophits_dir
	Path to directory containing TIGRFAM hit scores for each genome. Each file must follow the naming format [genome ID]_tigrfam_tophit.tsv and have the same header and format as the files in the example directory [Example directory: tigrfam_tophits.test]

	tigrfam_info_dir
	Path to directory containing a .INFO file for each TIGRFAM ID. The directory can be obtained from the JCVI FTP site: ftp://ftp.jcvi.org/pub/data/TIGRFAMs/. [Example directory: TIGRFAMs_INFO.test derived from the TIGRFAMs_15.0_INFO.tar.gz file at the JCVI FTP site]

NOTE: All file paths must be full paths or be relative to the directory that you are running make_db.py.

Running Instructions

Once you have satisfied all of the installation requirements, all data is formatted correctly, and you have generated a configuration file, run the wrapper script: python make_db.py --config path/to/config.yamlIt will generate and populate a new MySQL database and output progress to the screen and make_db.log.

AnnoTree Backend

This is the backend part for AnnoTree [http://annotree.uwaterloo.ca].

Install

Clone this repo, then
pip install -r requirements.txt

Connection to database is in config.py. Create config.py, using sample-config.py as an example, for security purpose please turn off read access for other group: chmod o-r config.py

Development server and debug

python app.py to start development server.
App is served on localhost:5001, you can change that in app.run line.
Note, normally port 5001 is blocked by firewall, to allow remote access, do:
sudo iptables -I input -p tcp --dport 5001 -j ACCEPT, BE CAREFUL THIS MAY OPEN SECURITY VULNERABILITIES

Production

	You need at least 150GB of disk space to properly load databases. We recommend 250GB.

	You should always use a locally attached SSD with >= 40MB/s IO speed for decent query time. Hard drives, network attached SSDs are proven to be too slow for some larger queries (can take 2 minutes). Some Cloud VMs by default will use network attached SSD and will not suit this task.

	It is recommended to create another user annotree_user and change user and group to that user: chown -R annotree_user:annotree_user <this repository>

	Downloading and loading database can take a long time, you might find it easier to run scripts related to them first

	It can take 30 minutes to 1 hour to follow all instructions (excluding loading time)

The following is a log of setting up a server on Feb 25, 2019, using (Ubuntu 16.04, with 2 core CPU, 8GB of RAM and 250GB of disk space):

Setting up MySQL: (If you are using Google Cloud, or other cloud services see bottom before proceeding to this section)

download SQL dump, please refer to https://bitbucket.org/doxeylabcrew/annotree-database/src/master/ for a list of URLs
e.g. wget <my-dump-url>
sudo apt-get update && sudo apt-get install -y mysql-server mysql-client
<enter root password>
The following would take a while, we recommend you use "screen" cmd to avoid terminal interruption
tar -vzxOf <path to .sql.tar.gz file> | mysql -u root -p --default-character-set=utf8
give full permission to gtdb_user
mysql_username=annotree
mysql_password=<CHOOSE YOUR OWN PASSWORD>
echo "CREATE USER '$mysql_username'@'%' IDENTIFIED BY '$mysql_password';GRANT ALL PRIVILEGES ON *.* TO '$mysql_username'@'%'; FLUSH PRIVILEGES;" | mysql -u root -p --default-character-set=utf8
in case you want to save it
sudo echo $mysql_password > /root/mysql_annotree_password

Now log in to the database, for sanity check

mysql -u annotree -p
<enter your password>
show databases;
should show everything that's loaded, keep note of the database names
use <any of the database name, e.g. gtdb_bacteria>
show tables;
should see a list of tables
SELECT COUNT(*) FROM node;
should show the size of node table
SHOW INDEX FROM pfam_top_hits;
should list pfam_id and gtdb_id indices, we encountered an issue in the past when disk space ran out in /tmp and indices were not loaded

Setting up server:

sudo apt-get update && apt-get install -y git python-pip libmysqlclient-dev python-dev build-essential
sudo mkdir -p /app
sudo useradd annotree_user
sudo passwd annotree_user
<enter password>
sudo mkhomedir_helper annotree_user
sudo chown -R annotree_user:annotree_user /app
sudo su - annotree_user
cd /app
git clone --branch latest-release --depth=1 https://bitbucket.org/doxeylabcrew/annotree-backend.git
cd annotree-backend
pip install -r requirements.txt

Now you can update config.py in backend

sudo su - annotree_user # make sure you are annotree_user, skip if you already are
cd /app/annotree-backend
cp sample-config.py config.py
vi config.py
change mysql username and password
change bacterial and archaeal database names as shown when you checked database
normally they should be gtdb_bacteria and gtdb_archaea
you may want to make sure config.py has secure permissions
chmod 440 config.py # this ensures only annotree_user and group annotree_user can read config.py

We will also show how to set up landing page and frontend here.

Landing page

sudo su - annotree_user # make sure you are annotree_user, skip if you already are
cd /app
git clone --depth=1 https://bitbucket.org/doxeylabcrew/annotree-landing-page.git
cd annotree-landing-page
Check annotree-landing-page for newest set up instructions, what's recorded here may be outdated
sudo easy_install nodeenv # switch to your own user if necessary
sudo su - annotree_user && cd /app/annotree-landing-page # do NOT use root from now on
nodeenv node6 --node=6.14.4 # this will be stuck if you use root
. node6/bin/activate
you have node 6 now
node --version
should say 6.14.4
npm install
node node_modules/gulp/bin/gulp.js
the default job compiles all SCSS files and minifies javascript, you should be good to go
sudo chown -R annotree_user:annotree_user /app/annotree-landing-page # fix permission if you accidentally installed by root

Frontend

use your own user account with sudo access
curl -sL https://deb.nodesource.com/setup_11.x | sudo -E bash -
sudo apt-get install -y nodejs
sudo su - annotree_user # make sure you are annotree_user, skip if you already are
cd /app
git clone --branch latest-release --depth=1 https://bitbucket.org/doxeylabcrew/annotree-frontend.git
cd annotree-frontend
Check frontend repo for specific instructions, the following instructions may be outdated
npm install
cp app/Config.js.sample app/Config.js
vi app/Config.js
change SERVER_BASE_URL to "http://<MY IP OR DOMAIN ADRESS>/annotree-api"
npm run build
you should see a public/ folder, this is where all html files are
we will symlink this to inside the landing page
ln -s /app/annotree-frontend/public /app/annotree-landing-page/app

Then, to serve frontend and backend using apache WSGI module:

sudo apt-get install -y apache2 libapache2-mod-wsgi
sudo a2enmod wsgi

We will symlink annotree-landing-page

sudo ln -s /app/annotree-landing-page /var/www/html/annotree

Change apache config file using the following as an example:

sudo vi /etc/apache2/sites-available/000-default.conf
replace with the following

Define annotree_backend_dir /app/annotree-backend

<VirtualHost *:80>
 ServerAdmin annotree_backend
 ServerName annotree_backend
 WSGIDaemonProcess dummy.com user=annotree_user group=annotree_user processes=2 threads=25proper permissions
 WSGIScriptAlias /annotree-api ${annotree_backend_dir}/app.wsgi
 DocumentRoot /var/www/html/annotree
 <Directory ${annotree_backend_dir}>
 Options Indexes FollowSymLinks
 WSGIProcessGroup dummy.com
 WSGIApplicationGroup %{GLOBAL}
 Order deny,allow
 Allow from all
 Require all granted
 </Directory>
 ErrorLog ${APACHE_LOG_DIR}/annotree_error.log
 CustomLog ${APACHE_LOG_DIR}/annotree_access.log combined
</VirtualHost>

Request to http://example.com/annotree-api/gtdb_bacteria/tree will be converted to /gtdb_bacteria/tree and sent to app.wsgi. You can modify API prefix by changing WSGIScriptAlias directive.

You will need to check frontend app/Config.js to make sure api URL prefix matches.

Enable changes and restart:

sudo service apache2 restart

Now check if everything is working:

curl localhost # you should see the landing page html
curl localhost/app # the main app
curl localhst/annotree-api/gtdb_bacteria/tree # check database and backend

Google Cloud

Google Cloud by default, uses network attached SSDs and will not satisfy our database access needs.We need to allocate a local SSD, which will be removed after instance is stopped (but not restarted). Extra caution is suggested. Database will reside on this drive instead of the default.

We will also need to make sure cloud service has the correct network configuration, this can be done by checking “Allow HTTP/Allow HTTPS” traffic in the VM instance EDIT tab (not included in the following instructions)

The following has been tested on Ubuntu 16.04 LTS:

Steps to set up database on Google Cloud

First go to https://cloud.google.com/compute/docs/disks/local-ssd#creating_a_local_ssd to allocate a SSD for your machine. Then run the following

the following mounts up SSD drive, to /mnt/disks/ssd
lsblk # lists all attached drives, usually "sdb" is the local SSD
sudo mkfs.ext4 -F /dev/sdb
sudo mkdir -p /mnt/disks/ssd
sudo mount /dev/sdb /mnt/disks/ssd
sudo chmod a+w /mnt/disks/ssd

We will install MYSQL server then move to SSD

sudo apt-get update && sudo apt-get install -y mysql-server mysql-client
ENTER "root" as password
sudo service mysql stop
sudo mv /var/lib/mysql /mnt/disks/ssd/mysql
sudo ln -s /mnt/disks/ssd/mysql /var/lib/mysql
Edit config, change "tmpdir" from /tmp to /tmp/mysql
sudo vi /etc/mysql/mysql.conf.d/mysqld.cnf
mkdir -p /mnt/disks/ssd/tmp-mysql
ln -s /mnt/disks/ssd/tmp-mysql /tmp/mysql
chmod a+rw /mnt/disks/ssd/tmp-mysql

Google Cloud uses app armor to manage application read/write permissions

sudo echo "alias /var/lib/mysql/ -> /mnt/disks/ssd/mysql/," >> /etc/apparmor.d/tunables/alias
sudo vi /etc/apparmor.d/usr.sbin.mysqld

Add the following to /etc/apparmor.d/usr.sbin.mysqld; source from: https://support.plesk.com/hc/en-us/articles/360004185293-Unable-to-start-MySQL-on-Ubuntu-AVC-apparmor-DENIED-operation-open-

/proc/*/status r,
/sys/devices/system/node/ r,
/sys/devices/system/node/node*/meminfo r,
/sys/devices/system/node/*/* r,
/sys/devices/system/node/* r,

/tmp/mysql/ r,
/tmp/mysql/** rwk,
/mnt/disks/ssd/tmp-mysql/ r,
/mnt/disks/ssd/tmp-mysql/** rwk,

/mnt/disks/ssd/mysql/ r,
/mnt/disks/ssd/mysql/** rwk,

sudo apparmor_parser -r /etc/apparmor.d/usr.sbin.mysqld
sudo service mysql start
echo "Sanity check to make sure everything is working"
echo "CREATE DATABASE temp; DROP DATABASE temp;" | mysql -u root -proot
should say ok

Now MySQL is good to go, you can continue in previous session

If you are interested in testing speed, use the following command. (It runs a large PFAM query that would normally take ~40s to >1minute on other machines):

echo "SELECT node_id
FROM gtdb_node gn
JOIN
(
SELECT
gtdb_id,
COUNT(DISTINCT pfam_id) AS num_hit_per_genome
FROM pfam_top_hits
WHERE pfam_id IN ('PF00252') AND eval <= 1.0
GROUP BY gtdb_id
HAVING num_hit_per_genome >= 1
) g
ON gn.gtdb_id = g.gtdb_id;" | mysql -u root -proot -D gtdb_bacteria_RS86

Updating

	Please check each repository (annotree-landing-page, annotree-frontend, annotree-backend) for possible instructions, what’s listed here may not be up to date

	First pull newest code to each repository by running git pull origin latest-release:latest-release; or for landing page git pull origin master

	For database, run mysql -u annotree -p and SHOW DATABASES; in MySql to check if all data are loaded properly, do not forget to update backend config.py in case of DB name change

	In case of server domain change, you need to change that in frontend: vi /app/annotree-frontend/app/Config.js to make sure new domain name matches.

	For backend, you may need to run pip install -r requirements.txt again, and npm install && npm run build for frontend; any change to frontend code must be followed by npm run build for it to compile.

	Finally check firewall settings, both on your local machine and on network (You need to allow incoming traffic on any cloud services)

	run service apache2 restart service mysql restart to bring up databases

Issues and contributing

Please feel free to open an issue on Bitbucket page for developers to review.

AnnoTree Frontend

This is the frontend of AnnoTree, that is used to browse and explore GTDB microbial genome data. Full website is at: http://annotree.uwaterloo.ca

Installation

To create a standalone instance of AnnoTree that include frontend, backend, and database, it is recommended to use our docker installer [https://bitbucket.org/doxeylab/gtdb-docker-compose/src].

The following is for developer use.

Install

npm install

Set up app/Config.js

cp app/Config.js.sample app/Config.js
You need to change parameters in Config.js
if you have the backend in debug mode running in 10.123.45.78:5001, then change SERVER_BASE_URL to "http://10.123.45.78:5001"
NO TRAILING SLASHES

Start the application in development mode

npm run start

If npm run start failed, try switching node version to 6.x.

Open http://localhost:8080 in your browser.

Build for production

npm run build

This will generate many html,js files in the public folder. You can point Apache DocumentRoot to public folder to serve web pages, or symlink /var/www/html/annotree to public folder

Here is a sample apache config:

<VirtualHost example.com:80>
 ServerAdmin webmaster@localhost
 # here we created a symlink /var/www/html/annotree that points to public folder
 DocumentRoot /var/www/html/
 # alternatively use DocumentRoot /var/www/html/annotree
 ErrorLog ${APACHE_LOG_DIR}/gtdb_frontend_error.log
 CustomLog ${APACHE_LOG_DIR}/gtdb_frontend_access.log combined
</VirtualHost>

Now you can visit example.com/annotree to see served pages.
Please make sure that app/Config.js is pointed to the correct backend URL.

Issues and contributing

Please feel free to open an issue on Bitbucket page for developers to review.

AnnoTree Landing Page

This is project is based on Freelancer landing page [https://startbootstrap.com/template-overviews/freelancer/]

#Installing and Updating

Making sure you have node6

Gulp-sass, part of the build tool here works well with node 6.x

use node --version to check your version, if different, proceed to https://github.com/ekalinin/nodeenv to install nodeenv that customizes your node environment. Specifically:

sudo easy_install nodeenv
do NOT use root user now, otherwise script will be stuck
nodeenv node6 --node=6.14.4
. node6/bin/activate
you have node 6 now
node --version
should say 6.14.4
npm install
node node_modules/gulp/bin/gulp.js
the default job compiles all SCSS files and minifies javascript, you should be good to go

Running in dev mode, real time update in browser

node node_modules/gulp/bin/gulp.js dev

Making production files

node node_modules/gulp/bin/gulp.js dev

Linking with main app

Symlink in this folder app/ to the public/ folder in annotree-frontend, so that all requests to <base url>/app/ gets redirected

Copyright and License

Copyright 2013-2018 Blackrock Digital LLC. Code released under the MIT [https://github.com/BlackrockDigital/startbootstrap-freelancer/blob/gh-pages/LICENSE] license.

Citing and Citations

Contributing

License

Index

 This is a development doc that explains code nuances

Overview

gtdb-backend provides REST API to query databases. It supports tree export, search, autocomplete features required by frontend.

It is a python-flask application, with all end points marked by @app.route decorator.

Why do we need @crossdomain decorator?

The reason is that frontend might be served in a different domain than backend. Although generally, allowing cross origin request for backend API is a bad practice, but in our case, it is not security sensitive, and allows third-party to develop a webpage that uses our data.

 This is a development doc that explains code nuances and organization of this project.

Overview

Frontend is divided to three parts: tree, query, and summary. Respective files are listed under app/feature/. We factor out communication to backend to service folder, and re-usable component in component folder. The actionHandler folder also contains files for each of these three parts.

The main technologies used are React, D3 and mobx. Only the tree and the pie chart are drawn using D3 and they are contained in a react component. The rest of documentation is broken up into features.

Querying explained:

We exemplify logic and structure through cases.

E.g. User typed domain name and clicked “GO”

	User click is handled by onClick directive in react component in QueryBoxContainer.js

	an action with type QUERY_SUBMITTED is dispatched from QueryBoxContainer.js

	AppDispatcher dispatches the action to all registered handlers, as initialized in App.js

	QueryBoxActionHandler.js decides to respond to the event by calling handleQuerySubmitted

	QueryBoxStore contains the current application state and is used to retrieve relevant info. The result is processed then submitted to the server via a call to queryService.queryDomains

	TreeStore and SummaryStore are modified by calling methods marked by @action decorator: this will tell mobx framework to check all @observable properties in those store classes, then automatically update any related component.

Tree

	TreeContainer.js contains buttons and and the main tree

	TreeOfLife.js is a React component wrapper for D3 tree drawing

	Tree update: Whenever TreeStore is modified, the autorun() function inside TreeOfLife.js is run to trigger D3’s re-rendering.

Example: user clicks on an internal node in tree

	since click events on D3 drawn tree are handled by D3, we need to pre-register event handler callbacks to TreeDrawer.js. This is achieved by calling treeDrawer.bindEvent in TreeOfLife.

	After user’s click, callbacks in TreeOfLife are called, and actions are dispatched using AppDispatcher

	TreeActionHandler handles the action, and a nodeDetail object is created inside TreeStore by calling setNodeDetail

	This mutates TreeStore and UI inside TreeContainer will be automatically updated. In particular, since treeStore.nodeDetail is not null, NodeDetailContainer will be rendered out, resulting a pop up box.

TreeStore

In tree store, we maintain several application states:

	masterTree: a tree object; although appearing as a method, this is used as a property, see mobx @computed documentation.

	displayRoot: also a tree object, but unlike masterTree, it does not contain the entire tree, nodes that are not displayed on screen are removed.

	displayRoot vs masterTree: In rendering UI, we some times wish to modify how a tree is displayed (e.g. modify branch length, remove certain nodes) but we should also keep an intact, master copy of tree if it were to be reset. Hence displayRoot concerns only the partial tree shown on screen, and masterTree is a master copy and should never be changed.

	currentDisplayLevel indicates the current tree viewing resolution. e.g. phylum, genus

About

AnnoTree is a web tool to facilitate visualization of genome annotations across large phylogenetic trees. AnnoTree version 1.0 includes KEGG [https://www.genome.jp/kegg/] and PFAM [https://pfam.xfam.org/] annotations for nearly 24,000 bacterial genomes. Phylogenetic and taxonomy information is derived from the GTDB [http://gtdb.ecogenomic.org/] database.

Future releases will include additional types of functional annotations, and expand the phylogenomic framework to include Archaea and Eukaryotes.

Recommended Browser

For the best result, we recommend using Chrome browser.

Team

AnnoTree was developed by the Doxey Lab at the University of Waterloo.

	Han Chen (core developer)

	Kerrin Mendler (core developer)

	Donovan Parks (GTDB genomic data and TOL)

	Laura Hug (phylogenomics, case studies, TOL)

	Andrew Doxey (tool conception/design)

Citation

Kerrin Mendler, Han Chen, Donovan H Parks, Laura A Hug, Andrew C Doxey. (2018) AnnoTree: visualization and exploration of a functionally annotated microbial tree of life. bioRxiv 463455; doi: https://doi.org/10.1101/463455

Contact us

Please email Kerrin Mendler (kemendle at uwaterloo dot ca) or Andrew Doxey (acdoxey at uwaterloo dot ca)

Version

Version for this app and associated data are listed under the main app footer.

 AnnoTree is divided to three parts, frontend, backend and database.

	Database: https://bitbucket.org/doxeylab/annotree-database

	Frontend: https://bitbucket.org/doxeylab/annotree-frontend

	Backend: https://bitbucket.org/doxeylab/annotree-backend

For users wishing to fully install AnnoTree, there is a complete log of our server set up in annotree-backend README.

[image: Creative Commons License]
The data is licensed under a Creative Commons Attribution 4.0 International License.

Example Queries

Searching genomes including KEGG term nitrite reductase, and assimilatory nitrate reductase

Searching taxa clostridium genus and a specific clostridium genome

Searching genomes containing flagellin basal body domain and flagellin D3 domain

Uploading BLAST Result for Taxonomy Search

	Format XML output to have some E value cut off [filter out insignificant hits]

	download XML2 in a single file

	Upload that file to app under taxonomy section

	Note that, only species id in BLAST file is considered

 Known Issues

Known Issues

Squeezed Graphics

Try enlarge the browser window if components are squeezed

I encountered an internal server error when searching particular pfam families, and the summary panel does not display

We might have just launched an update that causes browser cache to be out of sync of that in database. Clear browser cache by refreshing ctrl + shift + R.

My taxa don’t show up in the tree

Your taxa will not appear here if it’s not included in GTDB [http://gtdb.ecogenomic.org/], which is our source for taxonomy. If it is in GTDB but not here, we might have used an older version of GTDB.

My query is stuck, or takes a long time

Large queries with 10,000 hits or more can take up to a minute, if multiple users are using it might take longer.

 Workflow Demonstration

Workflow Demonstration

Search domains within specific subclade

	Use taxonomy search to quickly identify clade of interest

	Click and recenter on that clade

	Query domains of interest

Examine Distribution Pattern of Domains

	Select Domain in query box

	Enter all domains in protein, e.g. flagellin N and flagellin C. Remember to use autocomplete

	Click on any internal node of interest, check distribution count

	Recenter on specific clade of interest

	Pop up box offers more details

Note: if the order of the domain matters, use architecture instead of domain. Type * to match any domain. E.g. PF00669, *, PF00700 matches flagellin N, any domain, flagellin C

Too Much Detail

When too many genus representatives are displayed at once, we can go to phylum level and examine a specific subclade.

 @fortawesome/fontawesome-free - The Official Font Awesome 5 NPM package

@fortawesome/fontawesome-free - The Official Font Awesome 5 NPM package

“I came here to chew bubblegum and install Font Awesome 5 - and I’m all out of bubblegum”

[image: ../../../_images/fontawesome-free.svg]npm [https://www.npmjs.com/package/@fortawesome/fontawesome-free]

Installation

$ npm i --save @fortawesome/fontawesome-free

Or

$ yarn add @fortawesome/fontawesome-free

What’s included?

This package includes all the same files available through our Free and Pro CDN.

	/js - All JavaScript files associated with Font Awesome 5 SVG with JS

	/css - All CSS using the classic Web Fonts with CSS implementation

	/sprites - SVG icons packaged in a convenient sprite

	/scss, /less - CSS Pre-processor files for Web Fonts with CSS

	/webfonts - Accompanying files for Web Fonts with CSS

	/svg - Individual icon files in SVG format

Documentation

Get started here [https://fontawesome.com/get-started]. Continue your journey here [https://fontawesome.com/how-to-use].

Or go straight to the API documentation [https://fontawesome.com/how-to-use/font-awesome-api].

Issues and support

Start with GitHub issues [https://github.com/FortAwesome/Font-Awesome/issues] and ping us on Twitter [https://twitter.com/fontawesome] if you need to.

 <no title>

 Domain Search funcionality:

	User inputs a list of Pfam Ids

	returns

[tree_node_ids ...] list of numbers

	this data will be used subsequently in QueryActionHandler to highlight appropriate nodes

Node detail container:

	remove any existing architecture informatio